

RoyAlloy is trademarked, registered under DIN 1.2095, and US Patents 11,318,640, 6,358,334 and 6,045,633

FREE MACHINING, PREHARD STAINLESS **HOLDER STEEL**

PROPERTIES

PHYSICAL DATA

Prehardened to 321 HB. Data at room and elevated temperatures.

Temperature	68°F (20°C)	390°F (200°C)
Density kg/m³ lbs/in³	7,800 .284	7,750 .282
Modulus of elasticity N/mm² (Mpa) psi	200,000 29.0 x 10 ⁶	190,000 27.6 x 10 ⁶

TENSILE STRENGTH

Longitudinal Tests from 3" (76mm) rolled plate at 321 HB.

Testing temperature	68°F (20°C)	390°F (200°C)
Ultimate tensile strength psi N/mm²	155,000 1069	152,000 1048
Yield strength @ .2% offset psi N/mm²	129,000 890	126,000 869
% Elongation in 2"	12	12
% Reduction in area	34	34

IMPACT STRENGTH

Longitudinal Charpy V-notch Tests from a 3" (76mm) rolled plate at 321 HB.

Testing temperature	68°F (20°C)	390°F (200°C)
Ft-lbs	16	26
Joules	22	36

THERMAL CONDUCTIVITY

20°C	\longrightarrow	21.7 W/m*K
100°C	\longrightarrow	22.8 W/m*K
200°C	→	23.7 W/m*K

GUARANTEED TO PROVIDE UNMATCHED PRODUCTIVITY, PERFORMANCE, AND VALUE

RoyAlloy® (DIN 1.2095) provides significant cost savings and advantages compared to 420F (DIN 1.2085) type stainless steels.

SUPERIOR DIMENSIONAL STABILITY EXCELLENT CORROSION RESISTANCE HIGHER THERMAL CONDUCTIVITY **ENHANCED MACHINABILITY**

IMPROVED TOUGHNESS AND DUCTILITY SAFE AND SIMPLISTIC WELDABILITY

RoyAlloy® was developed and patented by EDRO to provide superior properties and performance in all critical areas of the manufacture and operation of high volume plastics mold base tooling. RoyAlloy's unique composition and micro-structure with zero retained austenite results in unparalleled stability with up to 15% higher thermal conductivity, and more than double the impact strength and resistance to cracking compared to 420F. RoyAlloy also demonstrates superior machinability with faster feeds and speeds and extended cutting tool life, providing substantial time and cost savings. RoyAlloy allows for safe and simple welding and is suitable for texturing and photoetching.

400 series martensitic stainless holder steel supplied Roy Alloy pre-hardened to approximately 300-321 HB. Wear Dimensional Corrosion Machinability

321 HB

Hardness

Resistance Resistance

Toughness

Polishability

Stability

MACHINING RECOMMENDATIONS

Extensive machining trials have shown that RoyAlloy is readily machined, provides excellent surface finishes and thread quality. RoyAlloy's superior dimensional stability after machining eliminates the need for stress relieving and excess stock oversize.

The cutting data below should be considered a general guideline and may require adjustments based on the equipment, selection of cutting tools, cutting parameters, and other factors. Individual results will vary and may frequently exceed these recommendations.

DRILLING

HIGH SPEED STEEL TWIST DRILLS

Drill d	Drill diameter		Cutting speed (v _c)		d (f)
mm	inch	m/min	f.p.m	mm/r	i.p.r
-5	-3/16	17-19*	56-62*	0.05-0.10	0.002-0.004
5-10	3/16-3/8	17-19*	56-62*	0.10-0.20	0.004-0.008
10-15	3/8-5/8	17-19*	56-62*	0.20-0.25	0.008-0.010
15-20	5/8-3/4	17-19*	56-62*	0.25-0.30	0.010-0.014

^{*}For coated HSS drill vc = 29-31 m/min (95-102 f.p.m.)

TURNING

Cutting data	Turning wit	Turning with HSS*	
parameter	Rough turning	Fine turning	Fine turning
Cutting speed (v _c) m/min f.p.m.	130–190 430–620	190–250 620–820	25-28 80-90
Feed (f) mm/r i.p.r.	0.2-0.4 0.008-0.016	0.05-0.2 0.002-0.008	0.05-0.3 0.002-0.01
Depth of cut (a _p) mm inch	2-4 0.08-0.16	0.5–2 0.02–0.08	0.5–3 0.02–0.1
Carbide designation ISO US	P20–P30 C6–C5 Coated carbide	P10–P20 C7–C6 Coated carbide or cermet	- -

^{*}HSS = High Speed Steel

MILLING

FACE AND SQUARE SHOULDER MILLING

Cutting data parameter	Milling with carbide Rough milling Fine milling		
Cutting speed (v _c) m/min f.p.m.	130–190 430–620	190-250 620-820	
Feed (f _z) mm/tooth in/tooth	0.2-0.4 0.008-0.016	0.1-0.2 0.004-0.008	
Depth of cut (a _p) mm inch	2-5 0.08–0.2	≤2 ≤0.08	
Carbide designation ISO US	P20–P40 C6–C5 Coated carbide	P10–P20 C7–C6 Coated carbide or cermet	

END MILLING

Cutting data parameter	Solid carbide	Carbide indexable insert	HSS
Cutting speed (v _c) m/min f.p.m.	80–120 260–390	120–170 390–560	35-40¹) 115-130
Feed (f₂) mm/tooth in/tooth	0.006-0.20 ²⁾ 0.0002-0.008 ²⁾	0.06-0.20 ²⁾ 0.002-0.008 ²⁾	0.01-0.35 ²⁾ 0.0004-0.014 ²⁾
Carbide designation ISO US	-	P15-P40 C6-C5	-

¹⁾ For coated HSS end mill $v_c = 60-66$ m/min (197–217 f.p.m.)

CARBIDE DRILLING

Cutting data parameter	Indexable insert	Type of drill Solid carbide	Carbide tip ¹⁾
Cutting speed (v _c) m/min f.p.m.	215–240 715–790	110–130 360–427	70–110 230–360
Feed (f _z) mm/r i.p.r	0.05-0.15 ²⁾ 0.002-0.006 ²⁾	0.10-0.25 ³⁾ 0.004-0.010 ³⁾	0.15-0.25 ⁴⁾ 0.006-0.010 ³⁾

GRINDING

A general grinding wheel recommendation is given below.

Type of grinding	Delivery condition
Face grinding straight wheel	A 46 HV
Face grinding segments	A 36 GV
Cylindrical grinding	A 60 KV
Internal grinding	A 60 JV
Profile grinding	A 120 JV

HEAT TREATMENT

RoyAlloy is provided prehardened to approximately 300-321 HB, and is characterized by uniform and consistent hardness in all dimensions.

WELDING

RoyAlloy is readily weldable without pre or post heating as it does not develop an over-hardened heat affected zone (HAZ) surrounding the weld deposit. This eliminates the risk of weld induced cracking during repairs or in future service.

For best results special RoyAlloy welding electrodes, available from EDRO, should be used. RoyAlloy electrodes will provide optimal chemical and mechanical properties, in order to match the filler with the base metal. Welding with dissimilar materials is NOT recommended as it can cause localized corrosion due to galvanic reactions.

Alternatively, processes such as gas metal arc welding (GMAW) and shielded metal arc welding (SMAW) may be employed, using several standard stainless filler metals.

More welding information and best practices are available upon request.

²⁾ Depending on radial depth of cut and cutter diamete

 $^{^{1)}}$ Drill with replaceable or brazed carbide tip $^{2)}$ Feed rate for drill diameter 20–40 mm (0.8"–1.6") $^{3)}$ Feed rate for drill diameter 5–20 mm (0.2"–0.8")

⁴⁾ Feed rate for drill diameter 10–20 mm (0.4"–0.8")